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LETTER TO THE EDlTOR 

A note on quantum braking 
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Pamplona, Spain 
$ LPSS, Ecole Normale Sup5rieure, 24 me Lhomond, 75231 Pais Cedex 05, France and 
Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA 

Received 20 February 1995 

Abstract. In a superRuid at T = 0' K, the zero-pint quantum Auchlations give a non-vanishing 
amplitude to the phonons. The scattering of th- phonons by a moving obstacle at low speed 
yields a drag that is proportional to the speed. This drag is computed for a sphere in some detail 
and the b a l  result shows a very strong divergence, as predicted recently by P0mea.u. 

This letter concerns a detailed calculation of the (formally diverging) drag by zero-point 
phonons on a moving obstacle in a quantum fluid. The physical ideas behind this have been 
explained in [ 11, and we present here a calculation of this force (see below for the meaning). 
Although this calculation in itself is without mystery, some conclusions of [I] have been 
challenged on the grounds that they go against the accepted views on irreversibility in 
superfluids (something that was shown in [l] not to hold however), and the possibility 
has been raised that, since [l] is about order-of-magnitude estimates, it could be $at the 
numerical coefficients of the laws so derived are zero. Thus, it is of interest to look more 
precisely at this matter, including a study of the numerical coefficients. 

The starting point is the Gross-Pitaevskii (GP) [Z] equation for the condensate 
wavefunction Y: 

ifi- a y  = --V2Y h2 +glYI 2 Y at  2m 
where in is the mass of the particles, h/2n the Planck constant and g is a (positive) 
interaction coefficient. The classical field Y will be quantized later on. Transport equations 
follow from (1) for the number density p = 1YI2 and the mass current J (bold type is used 
for vectors) whose Cartesian component J, are 

ih 
J,  = p a , w *  - w*a,wi 

with a, = 2 and W* complex conjugate of q. The momentum conservation reads 

aJ,  - + a,T,, = o 
at 

where T,, is the tensor of flux of the momentum 
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where S,, is the Kronecker delta. The force Fp on a body is the integral of T,, on its 
surface: 

F, = dZ’n,T,, s 
where nv is the unit normal to the surface, dC the area element, and the Einstein convention 
is used for index summation. From this, one may compute the force on a surface due to 
the reflection of a sound wave (a kind of radiation pressure). Let ‘YO be the wavefunction 
of the uniform ground state. Linear perturbations to the ground state are propagating waves 
(‘phonons’) such that each Fourier component behaves like 

SYk = Yoqe ik.rei(zo+@> 

where 7 is a small dimensionless number and where Go is the ground-state frequency 
-(glYolZ)/h (that we shall drop later on, because it is unobservable). The frequency o is 
related 131 to the wavenumber k by 

where c: = gpo/m is the square of the speed of sound and po = [YO[’ the ground-state 
mass density. 

The calculation done below is carried out in two steps. First we shall consider the 
reflection of a plane wave by a plane surface. This is relevant for the problem under 
consideration because we shall assume that the wavelength (as shown in [l]) is much 
shorter than the radius of curvature of the obstacle. This plane surface can be replaced in a 
first approximation by the local tangent plane. Then we calculate the pressure of the wave 
on the reflecting surface and at last obtain the total force by integrating over the surface of 
the moving obstacle and by taking the amplitude of the phonons as given by the zero-point 
fluctuations. The final result (equation (8)) is given by an integral with a buky ‘ultraviolet 
divergence’. In [l] it’was explained how to deal with this divergence; this topic will be 
considered in more detail in a future paper. 

Let a plane sound wave come from z c 0 and be reflected by the plane z = 0 with 
the boundary condition SP = 0 at z = 0. The solution of the linearized GP equation is the 
sum of an incident wave SYieik’re-irr and of a reflected wave 8Wcde.re-irr. The Cartesian 
components of the wavevector of the incident (k) and reflected (k‘) wave can be written as 

k‘ = (kx, 0; q’ = -4) k = (kx,  0, q)  o = c,(k: t q’)”’. 

Notice that these Descartes-like reflection formulae assume a homogeneous medium 
which is not absolutely me ,  due to a boundary layer near z = 0 of microscopic thickness 
Xo = h/(mc,); this is neglected because it is smaller than the wavelength of the phonons 
under consideration. 

Thus, within the various assumptions made, only one contribution quadratic in the 
amplitude of the sound wave to T,, does not vanish on the z = 0 boundary: 

With intrinsic notation this can be written as 

2fi2 

m 
T”” = --l6Yil2(k. ny 
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where n is the unit normal to the reflecting surface. The force F arising from the radiation 
pressure of a single impinging planewave is obtained by integrating the flux T.. across the 
surface of the obstacle. This is given by the surface integral 

where H ( k  .n) is the Heaviside function imposing the condition that the wave is incoming. 
A non-convex surface allowing multiscattering would compIicate these formulae; we shall 
not consider this possibility. 

We have not yet considered the perturbation to the phonon field due to the motion of 
the obstacle (a sphere) with respect to the background. This changes the wave propagation 
by a kind of (Doppler-Fizeau) refraction of the wave by the hydrodynamic velocity field 
around a moving sphere. This velocity field has long been known for a moving sphere: in 
the low Mach number l i t  for a perfect fluid it reads 

This is the velocity field in the reference frame of the sphere of radius R, u g  being 
the uniform speed of the fluid at infinity. This velocity field is responsible for a ‘mirage’ 
effect, that is the bending of the rays (i.e. the lines perpendicular to the isophase surfaces) 
by the non-uniform flow structure around the obstacle. This mirage is not symmetric with 
respect to the velocity reversal and induces an imbalance (and a ‘quantum drag’) between 
the radiation pressure from phonons coming from opposite directions. The d’Alembert 
equation for the phonon propagation reads for a medium at rest: 

But, as noticed in [4], this system is not Lorentz invariant because the original equation 
(1) is Galilean (as opposed to Lorentz) invaiiant. For a uniform flow velocity v ,  the 
d‘Alembert equation becomes 

For the mirage problem we are going to consider, we shall deal with a non-uniform 
velocity field a(?). We shall substitute a non-constant U ( T )  for v in (4), an approximation 
for the propagation of phonons in a non-uniform velocity field, since (4) is strictly true for 
a uniform velocity field w only. However, in the present problem the drag is dominated by 
fluctuations of a wavelength much shorter than the radius of the sphere, so (4) may be kept 
as a first-order approximation in this limit of ‘geometrical optics’. At a given frequency w, 
the equation of propagation becomes 

(iw +U. v)% - C,~V’Q, = 0 

which is solved formally in the WKWeikonal limit as 
CD = A(p)eiS(” 

where the phase S(T) is given (at first order in f i  = w/cs) as 
w 1 V S ( T )  = - [at + - (5) 
cs L cs 

where CT’ is a unit vector (to be defined more precisely later). This gives the deviation of 
the ray with respect to a straight line. Note also that this perturbative solution is consistent 
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because the velocity field U(T)  is irrotational. This allows us to integrate equation (5) at 
once since U(T) can be written as the gradient of a velocity potential; S(T) is then given 
formally as 

where 4 is the velocity potential (u(T) = -V@,@ = -210. r(1 + (R3/2r3) )  for a 
sphere). Far from the sphere, the phase field S(r) becomes k(u‘ + (u0/cs)) . T where 
k = o/cs. The Galilean transform does not change the space coordinates (this is the crucial 
difference between our case and that analysed by Einstein [Z] which was concerned with the 
electromagnetic fluctuations in vacuo, King concerned with the Lorentz invariance instead), 
so then the wavenumber at infinity is k(u’ + (U&) in either Galilean frame, i.e. the frame 
of the sphere or the rest frame of the fluid at infinity. Hence, the unperturbed wavenumber 
must be this wavenumber at infinity, that is k(u’ + (U&) and one must write 

to ensure k = (o/cs)u is the unperturbed wavenumber. The gradient of this phase can be 
taken, again in the eikonal limit, as the local wavenumber needed to compute the tensor 
component T.. occurring in (3). From (2) we obtain 

z z  
m 

T., = -lSYi12[VS(T). n]’. 

We are interested in the contribution to T,, that is linear in U. Note at this step of the 
calculation that any contribution to SYi (and thus to Tn,J linear in U is accounted for by 
the change of the phase S(T); the contributions arising from the change of amplitude A 
would be of higher-order either in the gradients of U or in the powers of U. For a plane 
wave there is also a part of T.. that is independent of the velocity; its contribution to F 
disappears after integration over all possible orientations of the wavenumber at infinity and 
by symmetry under space reflection. That part of T,. contributing to F is 

where k is the wavenumber at infinity. The boundary condition for the velocity on the 
surface of the sphere is U(?-). n = 0, whence the result 

Now we can perform the integral in (3) to obtain the drag force on a sphere: 

j3 
8JrlSYi12k2R2 F = -  

3m 
where j3 = U O / C , .  

It remains to integrate over all possible values of the wavenumber since we are 
considering the contribution of phonons arising from the zero-point fluctuations of every 
mode of the phonon field. 

Let S2 be the volume of the system. As the energy of the phonon-mode is a zero-point 
energy, one has 
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where the average (. . .) is over quantum fluctuations. Substituting this into (6), one obtains 
the contribution to F from a given phonon-mode. The total ‘braking force’ is obtained by 
adding the contributions of all modes. The number of modes dNk in the interval [k, k+dk] 
is related to the volume st (in the WKB limit) by the Weyl-Poincari formula: 

where dk is the volume element in the wavenumber space. 
expression for F at first-order in @ is 

Accordingly, the formal 

F = - - b  dkok. (8) 

Indeed, this integral over k has a very strong divergence (like k4) at large wavenumbers. 
However, as explained in [I], this divergence does not actually exist because the assumption 
of free non-interacting phonons does not hold when the wavelength becomes too short. 

It was argued in [l] that the smallest wavelength implied by this phenomenon of 
‘quantum braking’ should be of the order of (Rho)’fl ( l o  with microscopic length = h/mc,). 
This gives as an order of magnitude estimate for F 

liR2 3rr2 1 

hv F - - -  
Ai . 
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